NLP Trends 2020

Mikhail Burtsev, Neural networks and deep learning lab

NLP tasks

- Sequence classification
- Sequence tagging
- Sequence prediction
 \generation

Classes:	AddToPlaylist BookRestaurant GetWeather PlayMusic RateBook SearchCreativeWork SearchScreeningEvent
	BookRestaurant
	Find a cosy place for 30 people to celebrated anniversary of the first DeepPavlov release.

DeepPavlov org is an open source framework for chatbots and virtual assistants developed MIPT org Dolgoprudny GPE . first ORDINAL release was published two years ago DATE 2018 DATE and now it more than 3800 CARDINAL Stars 93000 CARDINAL downloads .

DeepPavlov is an open source framework for chatbots and virtual assistants. Its features include automatic language tagging, word segmentation and phrase embeddings.

Written by Transformer · transformer.huggingface.co 💭

Evolution of NLP models

Encoder-Decoder with Attention

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." *arXiv preprint arXiv:1409.0473* (2014). Wu, Yonghui, et al. "Google's neural machine translation system: Bridging the gap between human and machine translation." *arXiv preprint arXiv:1609.08144* (2016).

Transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017. http://jalammar.github.io/illustrated-transformer/

Universal pre-training / self-supervised learning / language models

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process,

2 - Supervised training on a specific task with a labeled dataset.

Supervised Learning Step

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018). http://ialammar.github.io/illustrated-bert/

Transformers zoo

Figure 1: (a): Content stream attention, which is the same as the standard self-attention. (b): Query stream attention, which does not have access information about the content x_{z_ℓ} . (c): Overview of the permutation language modeling training with two-stream attention.

Post BERT

BERT

OCTOBER 11, 2018

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin et al

GPT-2 FEBRUARY 14, 2019

Language Models are Unsupervised

Multitask Learners

XLNet

JUNE 19, 2019 XLNet: Generalized Autoregressive Pretraining for Language Understanding

CTRL

SEPTEMBER 11, 2019

CTRL: A Conditional Transformer Language Model for Controllable Generation

Transformer-XL

JANUARY 9, 2019

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

ERNIE

APRIL 19, 2019

ERNIE: Enhanced Representation through Knowledge Integration

RoBERTa

JULY 26, 2019

RoBERTa: A Robustly Optimized BERT Pretraining Approach

ALBERT

SEPTEMBER 26, 2019

ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

.

Figure 2: Illustration of the Transformer-XL model with a segment length 4.

Figure 1: The framework of ERNIE 2.0, where the pre-training tasks can be incrementally constructed, the models are pre-trained through continual multi-task learning, and the pre-trained model is fine-tuned to adapt to various language understanding tasks.

Mod	lel	Parameters	Layers	Hidden	Embedding	Parameter-sharing
	base	108M	12	768	768	False
BERT	large	334M	24	1024	1024	False
	xlarge	1270M	24	2048	2048	False
	base	12M	12	768	128	True
ALBERT	large	18M	24	1024	128	True
ALBERI	xlarge	60M	24	2048	128	True
	xxlarge	235M	12	4096	128	True

Accuracy

Matthew's Corr

Benchmarking

PT

SCOW INSTITUT

GLUE

	Ran	k Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP I	MNLI-m MI	NLI-mm	QNLI	RTE \	VNLI	AX		
	1	ERNIE Team - Baidu	ERNIE		90.2	72.2	97.5	93.0/90.7	92. <mark>9/92.5</mark>	75.2/90.8	91.2	90.6	98.0	90.9	94.5	49.4		
ŀ	2	王玮	ALICE v2 large ensemble (Alibaba DAMO NLP)	90.1	73.2	97.1	93.9/91.9	93.0/92.5	74.8/91.0					(GLUE	Tasks	
	3	Microsoft D365 AI & MSR AI & GATE	ECHMT-DNN-SMART		89.9	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2								
	4	T5 Team - Google	Т5		89.7	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	Name				Down	load	More Info	Metric
		XLNet Team	XLNet (ensemble)					92.9/90.5			Lingui				2			Matthew's Corr
	6	ALBERT-Team Google Language	ALBERT (Ensemble)		89.4	69. <mark>1</mark>	97.1	93.4/91.2	92.5/92.0	74.2/90.5	Accep							
	7	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	10000000	nent Treet	bank		*			Accuracy
	8	Facebook Al	RoBERTa					92.3/89.8				oft Resea arase Cor			*			F1 / Accuracy
	9	Junjie Yang	HIRE-RoBERTa		88.3	<mark>6</mark> 8.6	97.1	93.0/90.7	92.4/92.0	74.3/90.2		itic Textua ity Bench			*			Pearson-Spearman Co
F	10	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		87.6	68. <mark>4</mark>	96.5	92.7/90.3	91. <mark>1/9</mark> 0.7	73.7/89.9	Quora	Question	Pairs		2			F1 / Accuracy
	11	GLUE Human Baselines	GLUE Human Baselines		87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80. <mark>4</mark>	MultiN	LI Matche	ed		*			Accuracy
											MultiN	LI Misma	tched		2			Accuracy
											Questi	on NLI			*			Accuracy
											Recog	nizing Tex	ctual		±			Accuracy

Entailment

Winograd NLI

Diagnostics Main

*

*

Wang, Alex, et al. "Glue: A multi-task benchmark and analysis platform for natural language understanding." arXiv preprint arXiv:1804.07461 (2018). https://gluebenchmark.com/

Benchmarking

SuperGLUE

Ranl	kName	Model	URL	Scorel	BoolQ CB	COPA	MultiRC	ReCoR	D RTE WIC	WSC	AX-b	AX-g
1	SuperGLUE Human Baselin	esSuperGLUE Human Baseline	es 🔽	<mark>89.8</mark>	89.095.8/98.9	100.0	81.8/51.99	91.7/91.	393.680.0	100.0	76.6	99.3/99.7
2	T5 Team - Google	Т5		88.9	91.093.0/96.4	94.8	88.2/6 <mark>2.</mark> 39	93.3/92.	592.5 <mark>76</mark> .1	93.8	<mark>65.6</mark>	92.7/91.9
3	Zhuiyi Technology	RoBERTa-mtl-adv		85.7	87.192.4/95.6	91.2	85.1/54.39	91.7/91.	388.172.1	91.8	58.5	9 <mark>1</mark> .0/78.1
4	Facebook AI	RoBERTa		84.6	87.190.5/95.2	90.6	84.4/52.59	90.6/90.	088.269.9	89.0	57.9	91.0/78. <mark>1</mark>
5	IBM Research AI	BERT-mtl		73.5	84.889.6/94.0	73.8	73.2/30.5	74.6/74.	084.166.2	<mark>61.0</mark>	29.6	97.8/57.3
6	SuperGLUE Baselines	BERT++		71.5	79.084.8/90.4	73. <mark>8</mark>	70.0/24.1	72 <mark>.</mark> 0/71.	37 <mark>9.06</mark> 9.6	6 <mark>4.4</mark>	38.0	9 <mark>9.4/51.4</mark>
		BERT		<mark>69</mark> .0	77.475.7/83.6	70.6	70.0/24.1	72.0/71.	371.769.6	64.4	23.0	97.8/51.7
		Most Frequent Class		47.1	62.321.7/48.4	50.0	61.1/0.33	33.4/32.	5 50.3 50.0	65.1	0.01	00.0/50.0
		CBoW		4 <mark>4</mark> .5	62.249.0/71.2	51.6	0.0/0.5	14.0/ <mark>1</mark> 3.	649.7 <mark>5</mark> 3.1	<mark>65.1</mark>	- <mark>0.41</mark>	00.0/50.0
		Outside Best		-	80.4 -	84.4	70.4/24.5	74.8/73.	082.7 -	-	. 7:	-
-	Stanford Hazy Research	Snorkel [SuperGLUE v1.9]		-	-88.6/93.2	76.2	76.4/36.3		-78.972.1	72.6	47.6	-

SuperGLUE Tasks

Name	Identifier	Download	More Info	Metric
Broadcoverage Diagnostics	AX-b	*		Matthew's Corr
CommitmentBank	СВ	*		Avg. F1 / Accuracy
Choice of Plausible Alternatives	COPA	*		Accuracy
Multi-Sentence Reading Comprehension	MultiRC	*	C	F1a / EM
Recognizing Textual Entailment	RTE	*	2	Accuracy
Words in Context	WiC	.		Accuracy
The Winograd Schema Challenge	WSC	*	C	Accuracy
BoolQ	BoolQ	*		Accuracy
Reading Comprehension with Commonsense Reasoning	ReCoRD	*	C	F1 / Accuracy
Winogender Schema Diagnostics	AX-g	*		Gender Parity / Accuracy

Wang, Alex, et al. "Superglue: A stickier benchmark for general-purpose language understanding systems." arXiv preprint arXiv:1905.00537 (2019). https://super.gluebenchmark.com/

being made of flesh, were n

t, or who

BERTology

Figure 2: Layer-wise metrics on BERT-large. Solid (blue) are mixing weights $s_{\tau}^{(\ell)}$ (§3.1); outlined (purple) are differential scores $\Delta_{\tau}^{(\ell)}$ (§3.2), normalized for each task. Horizontal axis is encoder layer.

Figure 1: Importance (according to LRP), confidence, and function of self-attention heads. In each layer, heads are sorted by their relevance according to LRP. Model trained on 6m OpenSubtitles EN-RU data.

Kovaleva, Olga, et al. "Revealing the dark secrets of bert." arXiv preprint arXiv:1908.08593 (2019).

Tenney, Ian, Dipanjan Das, and Ellie Pavlick. "Bert rediscovers the classical nlp pipeline." arXiv preprint arXiv:1905.05950 (2019).

Voita, Elena, et al. "Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned." arXiv preprint arXiv:1905.09418 (2019) Hoover, Benjamin, Hendrik Strobelt, and Sebastian Gehrmann. "exbert: A visual analysis tool to explore learned representations in transformers models." arXiv preprint arXiv:1910.05276 (2019).

Multilingual transfer

	German	Russian	Chinese	<u>Vietnamese</u>
PER	87.21	95.74	84.12	<mark>83.3</mark> 0
LOC	69.54	82.62	60.83	60.9 <mark>9</mark>
ORG	52.95	55.68	54.34	38.92
Total	70.71	79.39	64.44	68.20

Conversational Al

Schema

(part of DSTC8 schema)

Enter text

That would work great for me. I'd like to make a reservation for two people on the 5th of March at half past 5 in the evening.

Question "name": "party size", "description": "Party size for a reservation", "is categorical": true, Party size for a reservation? "possible_values": ["1", https://demo.deeppavlov.ai/#/en/textga "2", Ask "3". "4", "5", Q: Party size for a reservation? "6" That would work great for me. I'd like to make a reservation for two people on the 5th of March at half past 5 in the evening. }, "name": "date", "description": "Date for the reservation or to find availability", "is categorical": false, Q: Date for the reservation or to find availability? "possible_values": [] }, That would work great for me. I'd like to make a reservation for two people on the 5th of March at half past 5 in the evening. "name": "time", "description": "Time for the reservation or to find availability", "is categorical": false, Q: Time for the reservation or to find availability? "possible values": [] }, That would work great for me. I'd like to make a reservation for two people on the 5th of March at half past 5 in the evening

Seq2Seq Math

2 MATHEMATICS AS A NATURAL LANGUAGE

2.1 EXPRESSIONS AS TREES

Mathematical expressions can be represented as trees, with operators and functions as internal nodes, operands as children, and numbers, constants and variables as leaves. The following trees represent expressions $2 + 3 \times (5 + 2)$, $3x^2 + \cos(2x) - 1$, and $\frac{\partial^2 \psi}{\partial x^2} - \frac{1}{\nu^2} \frac{\partial^2 \psi}{\partial t^2}$:

4.2 MODEL

For all our experiments, we train a seq2seq model to predict the solutions of given problems, i.e. to predict a primitive given a function, or predict a solution given a differential equation. We use a transformer model (Vaswani et al., 2017) with 8 attention heads, 6 layers, and a dimensionality of 512. In our experiences, using larger models did not improve the performance. We train our models with the Adam optimizer (Kingma & Ba, 2014), with a learning rate of 10^{-4} . We remove expressions with more than 512 tokens, and train our model with 256 equations per batch.

	Integration (BWD)	ODE (order 1)	ODE (order 2)
Mathematica (30s)	84.0	77.2	61.6
Matlab	65.2	(<u>1</u> 1)	2
Maple	67.4	-0	÷
Beam size 1	98.4	81.2	40.8
Beam size 10	99.6	94.0	73.2
Beam size 50	99.6	97.0	81.0

Table 3: Comparison of our model with Mathematica, Maple and Matlab on a test set of 500 equations. For Mathematica we report results by setting a timeout of 30 seconds per equation. On a given equation, our model typically finds the solution in less than a second.

Equation	Solution
$y' = \frac{16x^3 - 42x^2 + 2x}{(-16x^8 + 112x^7 - 204x^6 + 28x^5 - x^4 + 1)^{1/2}}$	$y = \sin^{-1}(4x^4 - 14x^3 + x^2)$
$3xy\cos(x) - \sqrt{9x^2\sin(x)^2 + 1}y' + 3y\sin(x) = 0$	$y = c \exp\left(\sinh^{-1}(3x\sin(x))\right)$
$4x^{4}yy'' - 8x^{4}y'^{2} - 8x^{3}yy' - 3x^{3}y'' - 8x^{2}y^{2} - 6x^{2}y' - 3x^{2}y'' - 9xy' - 3y = 0$	$y = \frac{c_1 + 3x + 3\log(x)}{x(c_2 + 4x)}$

Table 4: Examples of problems that our model is able to solve, on which Mathematica and Matlab were not able to find a solution. For each equation, our model finds a valid solution with greedy decoding.

Lample, Guillaume, and François Charton. "Deep learning for symbolic mathematics." arXiv preprint arXiv:1912.01412 (2019).

Future Conv Al research

